- totally bounded subset
- Математика: вполне ограниченное подмножество
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Totally bounded space — In topology and related branches of mathematics, a totally bounded space is a space that can be covered by finitely many subsets of any fixed size (where the meaning of size depends on the given context). The smaller the size fixed, the more… … Wikipedia
Bounded set — In mathematical analysis and related areas of mathematics, a set is called bounded, if it is, in a certain sense, of finite size. Conversely a set which is not bounded is called unbounded. Definition A set S of real numbers is called bounded from … Wikipedia
Bounded set (topological vector space) — In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be inflated to include the set. Conversely a set which is not… … Wikipedia
Uniform continuity — In mathematical analysis, a function f ( x ) is called uniformly continuous if, roughly speaking, small changes in the input x effect small changes in the output f ( x ) ( continuity ), and furthermore the size of the changes in f ( x ) depends… … Wikipedia
Relatively compact subspace — In mathematics, a relatively compact subspace (or relatively compact subset) Y of a topological space X is a subset whose closure is compact.Since closed subsets of compact spaces are compact, every set in a compact space is relatively compact.… … Wikipedia
Compact space — Compactness redirects here. For the concept in first order logic, see compactness theorem. In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness… … Wikipedia
Metric space — In mathematics, a metric space is a set where a notion of distance (called a metric) between elements of the set is defined. The metric space which most closely corresponds to our intuitive understanding of space is the 3 dimensional Euclidean… … Wikipedia
Glossary of topology — This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also… … Wikipedia
Glossary of order theory — This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be … Wikipedia
Heine–Borel theorem — In the topology of metric spaces the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:For a subset S of Euclidean space R n , the following two statements are equivalent: * S is closed and bounded *every open cover of S has a … Wikipedia
Total order — In set theory, a total order, linear order, simple order, or (non strict) ordering is a binary relation (here denoted by infix ≤) on some set X. The relation is transitive, antisymmetric, and total. A set paired with a total order is called a… … Wikipedia